Post-nonlinear causal models
Algorithm Introduction
Causal discovery based on the post-nonlinear (PNL 1) causal models. If you would like to apply the method to more than two variables, we suggest you first apply the PC algorithm and then use pair-wise analysis in this implementation to find the causal directions that cannot be determined by PC.
Usage
from causallearn.search.FCMBased.PNL.PNL import PNL
pnl = PNL()
p_value_foward, p_value_backward = pnl.cause_or_effect(data_x, data_y)
Parameters
data_x: input data (n, 1), n is the sample size.
data_y: output data (n, 1), n is the sample size.
Returns
pval_forward: p value in the x->y direction.
pval_backward: p value in the y->x direction.
- 1
Zhang, K., & Hyvärinen, A. (2009, June). On the Identifiability of the Post-Nonlinear Causal Model. In 25th Conference on Uncertainty in Artificial Intelligence (UAI 2009) (pp. 647-655). AUAI Press.